192 research outputs found

    A Markov model for inferring flows in directed contact networks

    Full text link
    Directed contact networks (DCNs) are a particularly flexible and convenient class of temporal networks, useful for modeling and analyzing the transfer of discrete quantities in communications, transportation, epidemiology, etc. Transfers modeled by contacts typically underlie flows that associate multiple contacts based on their spatiotemporal relationships. To infer these flows, we introduce a simple inhomogeneous Markov model associated to a DCN and show how it can be effectively used for data reduction and anomaly detection through an example of kernel-level information transfers within a computer.Comment: 12 page

    Active contractility in actomyosin networks

    Full text link
    Contractile forces are essential for many developmental processes involving cell shape change and tissue deformation. Recent experiments on reconstituted actomyosin networks, the major component of the contractile machinery, have shown that active contractility occurs above a threshold motor concentration and within a window of crosslink concentration. We present a microscopic dynamic model that incorporates two essential aspects of actomyosin self-organization: the asymmetric load response of individual actin filaments and the correlated motor-driven events mimicking myosin-induced filament sliding. Using computer simulations we examine how the concentration and susceptibility of motors contribute to their collective behavior and interplay with the network connectivity to regulate macroscopic contractility. Our model is shown to capture the formation and dynamics of contractile structures and agree with the observed dependence of active contractility on microscopic parameters including the contractility onset. Cooperative action of load-resisting motors in a force-percolating structure integrates local contraction/buckling events into a global contractile state via an active coarsening process, in contrast to the flow transition driven by uncorrelated kicks of susceptible motors.Comment: 15 pages, 4 main figures, 4 supplementary figure

    Probing empirical contact networks by simulation of spreading dynamics

    Full text link
    Disease, opinions, ideas, gossip, etc. all spread on social networks. How these networks are connected (the network structure) influences the dynamics of the spreading processes. By investigating these relationships one gains understanding both of the spreading itself and the structure and function of the contact network. In this chapter, we will summarize the recent literature using simulation of spreading processes on top of empirical contact data. We will mostly focus on disease simulations on temporal proximity networks -- networks recording who is close to whom, at what time -- but also cover other types of networks and spreading processes. We analyze 29 empirical networks to illustrate the methods

    From sparse to dense and from assortative to disassortative in online social networks

    Full text link
    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.Comment: 10 pages, 7 figures and 2 table

    Diffusion on networked systems is a question of time or structure

    Get PDF
    Network science investigates the architecture of complex systems to understand their functional and dynamical properties. Structural patterns such as communities shape diffusive processes on networks. However, these results hold under the strong assumption that networks are static entities where temporal aspects can be neglected. Here we propose a generalized formalism for linear dynamics on complex networks, able to incorporate statistical properties of the timings at which events occur. We show that the diffusion dynamics is affected by the network community structure and by the temporal properties of waiting times between events. We identify the main mechanism—network structure, burstiness or fat tails of waiting times—determining the relaxation times of stochastic processes on temporal networks, in the absence of temporal–structure correlations. We identify situations when fine-scale structure can be discarded from the description of the dynamics or, conversely, when a fully detailed model is required due to temporal heterogeneities

    Exploring concurrency and reachability in the presence of high temporal resolution

    Full text link
    Network properties govern the rate and extent of spreading processes on networks, from simple contagions to complex cascades. Recent advances have extended the study of spreading processes from static networks to temporal networks, where nodes and links appear and disappear. We review previous studies on the effects of temporal connectivity for understanding the spreading rate and outbreak size of model infection processes. We focus on the effects of "accessibility", whether there is a temporally consistent path from one node to another, and "reachability", the density of the corresponding "accessibility graph" representation of the temporal network. We study reachability in terms of the overall level of temporal concurrency between edges, quantifying the overlap of edges in time. We explore the role of temporal resolution of contacts by calculating reachability with the full temporal information as well as with a simplified interval representation approximation that demands less computation. We demonstrate the extent to which the computed reachability changes due to this simplified interval representation.Comment: To appear in Holme and Saramaki (Editors). "Temporal Network Theory". Springer- Nature, New York. 201

    Quantum Secure Direct Communication with Mutual Authentication using a Single Basis

    Get PDF
    In this paper, we propose a new theoretical scheme for quantum secure direct communication (QSDC) with user authentication. Different from the previous QSDC protocols, the present protocol uses only one orthogonal basis of single-qubit states to encode the secret message. Moreover, this is a one-time and one-way communication protocol, which uses qubits prepared in a randomly chosen arbitrary basis, to transmit the secret message. We discuss the security of the proposed protocol against some common attacks and show that no eaves-dropper can get any information from the quantum and classical channels. We have also studied the performance of this protocol under realistic device noise. We have executed the protocol in IBMQ Armonk device and proposed a repetition code based protection scheme that requires minimal overhead

    Discovering universal statistical laws of complex networks

    Full text link
    Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their generalisation power, which we identify with large structural variability and absence of constraints imposed by the construction scheme. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This allows, for instance, to infer global features from local ones using regression models trained on networks with high generalisation power. Our results confirm and extend previous findings regarding the synchronisation properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks with good approximation. Finally, we demonstrate on three different data sets (C. elegans' neuronal network, R. prowazekii's metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models

    Portable anthrax detection system (PADS)

    Get PDF
    Poster presented at Biomedical Technology Showcase 2006, Philadelphia, PA. Retrieved 18 Aug 2006 from http://www.biomed.drexel.edu/new04/Content/Biomed_Tech_Showcase/Poster_Presentations/Lec_6.pdf.Biosensors such as the Quartz Crystal Microbalance (QCM) and micro cantilever (MC) are becoming increasingly popular in homeland security applications due to their high sensitivity. Furthermore, they can be functionalized for specific pathogens such as bacillus anthracis (anthrax) to give high selectivity. These sensing platforms are currently available, but expensive laboratory equipment is required for sample preparation, measurement and analysis. The ideal device will give accurate and repeatable results on a real-time basis using a single system that completes the entire process for use in the laboratory or field. The Portable Anthrax Detection System (PADS) has been developed to meet these requirements. It utilizes a cartridge that contains either a QCM or MC sensor. The system introduces a sample to the sensor, then measures and analyzes it for bacillus anthracis. Sensor results are quantified based on a specific algorithm for the pathogen. The PADS is user friendly, inexpensive, compact, flexible, and is currently undergoing reliability testing

    Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries

    Get PDF
    The nuclear topography of splicing snRNPs, mRNA transcripts and chromosome domains in various mammalian cell types are described. The visualization of splicing snRNPs, defined by the Sm antigen, and coiled bodies, revealed distinctly different distribution patterns in these cell types. Heat shock experiments confirmed that the distribution patterns also depend on physiological parameters. Using a combination of fluorescencein situ hybridization and immunodetection protocols, individual chromosome domains were visualized simultaneously with the Sm antigen or the transcript of an integrated human papilloma virus genome. Three-dimensional analysis of fluorescence-stained target regions was performed by confocal laser scanning microscopy. RNA transcripts and components of the splicing machinery were found to be generally excluded from the interior of the territories occupied by the individual chromosomes. Based on these findings we present a model for the functional compartmentalization of the cell nucleus. According to this model the space between chromosome domains, including the surface areas of these domains, defines a three-dimensional network-like compartment, termed the interchromosome domain (ICD) compartment, in which transcription and splicing of mRNA occurs
    corecore